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We believe that increasing failure rates and the increasing relevance of load imbalance and noise will be
major obstacles for exascale computing. We also believe that - even if novel programming paradigms will
be found - HPC programs with tight computation/communications cycles, for example represented by
applications based on an MPI-library, will be among the most demanding applications. We are convinced
that static partitioning together with application-level load balancing as used in current high-end
machines will cease to be effective.

In contrast, we envision future exascale computers, where applications of fairly different types will share
an exascale computer. They will flow in and out, expand and shrink on demand. These applications will
run on dedicated application-specific run-times, some of them extremely small and optimized for an
application domain, others containing a full components-off-the-shelf operating system (COTS) such as
GNU/Linux. We assume these run-times to be based on a thin common software substrate and will range
from library-style implementation techniques to (thin) virtualization architectures. We consider it a key
challenge to invent interfaces and protocols that allow applications and/or run-time to cooperate with the
thin common software substrate in managing load and failure handling.

The hypothesis underlying our approach is that the basic technologies needed for such an exascale
operating system are available and mature, but need to be adapted and integrated. These technologies are
microkernels and microkernel-based virtualization(such as L4 and L4Linux[1,7]), erasure-code based
storage (such as used in RAID), on-line management systems (such as load balancing in MosiX[2]),
versatile distributed storage systems (such as XtreemFS[3,4]), split applications (as found in Real-Time
and High-Security architectures, for example based on L4[5,6]) and application-specific libraries (such as
OpenMPI).

The technology combination is straight forward (see figure at the end of page 2 for a rough sketch):

* All nodes of an exascale computer share a common software substrate consisting of a microkernel
and few small and predictable dedicated components.

¢ Cores can be computation or service cores. Service cores run a (potentially fat) COTS operating
system for overall management. Computation cores run (hopefully slim) components, just the
minimum needed for the performance critical parts of an (HPC) application.

* Demanding applications (or their libraries) are split into critical and uncritical parts. Uncritical
parts run on service nodes and COTS operating systems (for example Linux), critical parts on a
dedicated operating system personality (for example: library-based). This approach has been
successfully demonstrated in other areas[5]. Obvious choices for splitting are a split
implementation of an MPI library and of a storage system used to handle redundant cross-node
checkpoints. If more computing power is needed for applications needing COTS operating
systems, thin virtual machine instances (for example as built for the NOVA virtualization
system|[7]) are created or migrated to the computation nodes.

* To cope with node failures, checkpoints are written distributed onto nodes (we expect to have
massive low-power storage on each node, for example low power RAM or PCM). To protect
checkpoints from node failures, erasure codes are added (just like in RAID) and striped on
different nodes. Applications need not to write checkpoints to file systems, but should be
enhanced such that can produce a dense checkpoint upon request by management software.

* Applications and on-line systems management (for example with scalable gossip-based
distributed bulletin board and heuristics such as in Mosix) cooperate. For example, applications
“yell for help” if computation demand explodes, then system-level management distributes load
on available nodes.

None of the technologies is new, but - to our surprise - they have never been properly integrated. The
resulting system - rather than claiming to solve all exascale problems - forms a substrate that can be used
to explore many additional opportunities. These include but are not limited to incremental checkpoints,
transparent active replication (as has been demonstrated for embedded systems on top of L4[8]), plugin
modules for other forms of load management, split libraries for other programming paradigms.



Related work:

Some related work has already been mentioned above and will be mentioned in the assessment section.
Obvious other related work includes microkernels used in HPC. Blue Gene’s CNK[9] is an example for an
extremely thin kernel, however providing no protection which - in our view - will be needed. First-
generation kernels, for example such based on Chorus[10], are much larger and less efficient than second
and third generation kernels such as those of the L4 family[11]. Commercial virtualization systems are an
order of magnitude larger than experimental novel ones [7,12]. Some experts recognized the need to
relieve applications programmers from balancing issues by factoring it out into libraries(Charm ++,[13]).
However, we believe, dedicated interaction is needed between an operating system directly controlling
hardware and the applications to enable informed decisions on failure and load handling.

Assessment:

Challenges addressed: Load imbalances are expected from highly dynamic applications such as those
based on dynamic multi grid algorithms. An application-level management alone will not work any more
in exascale. Writing checkpoints to file systems will be no longer effective as higher failures rates together
with larger applications will require frequent checkpoints (or an alternative method such as active
replication).

Mature technologies are combined in this approach. MosiX is used extensively in large scale applications.
Implementations of the L4 family of microkernels run in many research labs, in over a billion cell phones,
have been used in HPC experiments (for example in IBM’s Kitty Hawk project on Blue Gene). Erasure-
code based storage is widely used in RAID technology. XTreem FS is used as basis for many Cloud
applications. Open-MPI and other MPI libraries form the basis for many HPC applications.

Neither uniqueness nor novelty can be claimed for any of the used technologies. A competent combination
however has never been attempted to the best of our knowledge.

We expect our approach to be applicable wherever multiple dynamic applications share large systems
whose components can fail.

Efforts — based on initial analysis — could be confined to a small team of 5 expert engineers to build a quick
and dirty, limited prototype of an integrated system and produce a detailed design document within a
year. A larger team of approximately 10 can produce a usable prototype in subsequent 2 years. Main risk
for this effort estimate is the availability of precise documentation of hardware, support by equipment
vendors and sufficient time on a large HPC. The authors currently seek such funding.

Other challenges, for example the usage of special purpose hardware devices (GPU, flexible hardware) are
largely orthogonal to our approach.
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Figure: Architecture Overview
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